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NONLINEAR ESTIMATION

lntroduction

IUring recent years, there has been considerable interest in the possi-

bility of using only current year data as a basis for developing yield fore-

casts during the growing season. To this end, efforts have been directed

toward developing "within year" forecast models for which the pertinent pa-

rameters can be estimated with acceptable precision from current season data

only. Current plans include continuing this research.

Within year models could be a valuable supplement to the "between year"

JOOdelspresently being used in yield forecasting. Betweenyear models as-

sune relationships that are estimated to exist between independent and depen-

dent variables during a base period (usually a three year period preceding

the current growingseason) are applicable to the current year. The perfor-

manceof these models has been closely related to the degree that this assump-

tion of applicability from a base period to the current year has been violated.

The need for supplemental infonnation from a within year model is most criti-

cal in those years whengrowingconditions differ greatly from those of the

base period.

In addition to providing supplemental infonnation to an ongoing yield

forecast system, within year rodels could be very useful whendeveloping a

forecast system for a newcrop. Usually 3-5 years of information nn.lStbe

gathered before a reliable betweenyear rodel can be implemented. It is ex-

pected that a within year model could be developed in a shorter period of

time since a base period is not needed.

Given the need for a within year forecast model, the question becomes

what form this modelmight take and howits parameters can be estimated.
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The approach taken thus far with respect to grain crops is that the model

should describe the process of kernel dry matter accumulation. With this

in mind, an examination of alternative models lead to a special case of what

is sometimescalled the Logistic GrowthModel. Algebraically, this model

can be expressed as

y = __ 1__ a > 0 , a > 0 , 0 < p < 1 ,

a + apt

~ ----- ------
c..~ • I

I
I

<, time (~)
This model has been used in several applications, including population

and it can be represented as shownin the figure below.
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growth studies. In population studies p is sometimesassumedto be slight-

ly larger than tmity.

In applying this model to kernel dry matter accumulation for an in-

dividual plant, we are hypothesizing that acClD'l1Ul.ationhegins slowly at

first, increases at an increasing rate for a period of time and then in-

creases at a decreasing rate Wltil a maximun(asymptotic) value is reached.

'This asymptotic value would be the kelnel dry matter at harvest.

The point in the phenological developmentof a plant coinciding with

time oqu.al to zero should approximate as closely as possible the inital

stages of kernel development (e.g., silk emergencein com or flowering in

wheat).

The value of y at t = 0 is 1 , since po = 1. The asymptotic
a + a t t

value of y is .!. and is attained as t becomeslarge since p and thus ap
a



tends to 0 with 0 < P < 1. Assumingthe logistic growth model is the appro-

pr late model. the question remaining is whether or not the parameters a, a
and p can bo estimated satisfactorily and early enough in the growing season

to provide a useful yield forecasting system.

. The objecti ve Gf this paper is to describe a method for estimating the

parameters of a nonlinear model (such as the logistic growth model) based

on sample data and to provide examples. Also, two variations of this model

which allow for relaxing certain model asstunptions concerning residuals are

explored.

Estimation

The growth modelwe are considering is of the fom
1

Yi = t + ui ' i = 1, ...., n
a+Sp i

where Y. is a specific value of the dependent variable, t. is the corre-
1 1

sponding value of a time variable and u. is the disturbance tem for the
1

i th observation. Since this model is intrinsically nonlinear in the unknown

parameters a, B and p, the methodof least squares is not directly applicable

for fitting it to sample data.

Onemethod for estimating the parameters of a nonlinear model is the

linearization (or Taylor series) method.* In general, we begin by hypothe-

sizing a rode1 of the fonn

y. = f (X.; 8'" + u· , i = 1, •••• , n
1 ~, ~ 1

where yi is the value of the dePendent variab1e,!i = (Xil' Xi2, ... , Xik)

is the vector of k independent variables ;md u. is the disturbance tem for
. 1

the ith observation and 8" = (81, 82, ... , 8 ) is the vector of p unknown- p
parameters to be estimated.

*Source: N. R. Draper and H. Smith: Applied Regression Analysis, Wiley, New

York, 1966, Chap. 10.
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Beginningwith an initial estimate of the parameters, 0" = (0 ,020 , ••
-0 10

•• , (3 ), if we carry out a Taylor series expansion of f (X , ~ about the
~ ~

point 0 and disregard the tenns beyond the first derivatives, we can say that,
-0

approximately, when0 is close to 0
- -0

P
I:•y. • £ rx., 0 ) + j-1

1 \:"-0 G£(X-, ~ ]
J. (0.
de. J

J

o )jo + u., i ••1, ... , n.
1

o .•. 0
- -0

All infonnation available from theory and previous survey results con-

cerning the population being saJl1l1edwouldbe used in estimating initial

values for the parameters. Wecan re-wri te the equation above as

o .•• 0- -o

••• + [a£(~,~J(0 - e )
d0 P po

P
o = 0

-0

o '"' 0- -o

+u.,i=l, .. ,n
1

which can be expressed in matrix notation as

(I - ~) :. z0:S + u
where

(Y-f)=
- -0

Y1 - f (X , 0 )
-1 -0

y - f(.! , ~)n n e - 0p po

u =

u
n

and
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J

(;) III 0
- -0

••

•.•••• , , t

•

El •• 0
-0

•••••••••• • . . ..... af(X , S2)
J1

ao
P

The parameter vector, 1,' can then be estimated by applying ordinary least

squares to obtain

1..= ~ ..Z r1 Z" C!. - f )
1 o -0 -0 -0

where

0 - 011 lQ

; = El - El
21 • 20

El - 0
PI po

The vector 1.1will minimize the error stunof squares

A n ~ ~ ~f(X" il] ?J2SS (y) = 1: y. - f (X., 0) - EP , (El. - (;). )
i=1 1 -, -u j-l ao. J JO

: J
(;) = 0

-0
with respect to the CElj- Eljo) , j = 1, .", p.



••• , 0 ) as. a revised estimate of the tmknown
PI

••• , 0p)' we can place the 0j1, j = 1, ... , P

= 1, ... , P in the equations above, repeat

lIh
6

Using o~ = (0 ,0 ,
-" 11 ' 21

parameter vector 0~ = (0 , 0 ,
- 1 2

in the samerole as the G. , j
JO

the process of deriving the least squares solution and obtain another re-

vised estimate G~ = (0 ,0 , ...,0 ).
- 2 12 22 p2

This iterative process is continued lmtil the solution converges. The

criterion for convergencemight be

o
j (k+l)

o
jk

or alternatively

- e
jk < o , j

1
= 1, ... , P ,

ssG. ) - SS(y )
(k+ l) k

55C\) < o
2

.in successive iterations k and (k+1), where 01 or 02 wouldbe predetennined

tolerance values.

Note that with the tenninating kth iteration, the SS(y ) will be the
K

minimumattainable to the accuracy imposedby the termination criterion

chosen. Oneshould be aware of the effects of this limitation. For example,

even though the error term u of the nonlinear model is assumedto be nonnally

distributed, e is not normally distributed, 02 = SSG. )/ (n-p) is not an
k

tmbiased estimate of 0'2 and confidence intervals constructed for population

parameters are only approximate. Of course, the more closely the sample

data fits the hypothesized model and the smaller the termination criterion,

the better the approximationwill be.

Example(GrapeData)

The examplethat follows will illustrate the iterative process. Data

used were collected as part of a study of grape growth characteristics in
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Michigan during 1962. Although data collection was not designed for fitting

the results to a growth model, the calculations will hopefully serve to

clarify the linearization procedure.

y. =
1 0 t.01 + 02 - 3 1

where Yi is the weight per grape, ti is the time since berry fonnation began

and u. is the disturbance tenn for the i th observation and 91, O2, and 03
1

Weight per ~rape
(grams)

1.13
1.04
1.10
1.06
1.15
1.03
1. 56
1.61
1.42
1.96
1.31
1.59
1.09
1.72
1.85
1. 75
2.27

The model hypothesized is
1

Time Since Berry
Fonnation Began

(days)

6
6
6
6
6
6
11
11
11
21
21
21
22
22
22
22
22

+ u. , i = 1, ... , 17
1

are the unknownparameters to be estimated.

Initial estimates of the paraneters to be used are

°10 0.27
0 = 020 = 0.73-0

°30 0.90
An initial estimated error mean square will be computed to comparewith that

which will result after the first iteration.

02 =
o

1 I;n
n-p i=l
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~2[13 + [04
2

'" 1 - 1 - 1

(.90~17-3
.27 + .73 (.90) .. .27 + .73

L7 1
~2

+ ........ 'I. + -
22

.27 + .73 (.90)
= 0.85276

COJli>utationsfor the first iteration are as follows:

Yl - f (t ~' 2,0) 1.13 - 1
6

.27 + •73 (.90)
y - f >= Y2 - f(t2, e ) = 1.04 - 1

-0 • 0 6
• .27 + .73 (.90)

•
• ••
•

f(t , e ) 2.27 - 1n -0 22
.27 + .73 (.90)

-0.38987

= -.47987

-0.65493

e = 9
- -0

•
•
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-1
2

[.27 + .73 (.90)6]

-(.90)6
2

[.27 + .73 (.90)6]
-6 (.73)(.90)5

2
[.27 + .73 (.90)6]

•
-1

2
[.27 + .73 (.90)22]

.
_(.90)22

Z
[.27 + .73 (.90)22]

21-22 (.73)(.90)
2

[.27 + .73 (.90)22]

•
-2.31000

-8.55527

-1.22763

-0.84250

-5.97445.

-15.03391

90.03984
19.66104

189.70704

v. = (Z" Z ) -1 Z" (Y - f )
-0 -0 -0 - -0

(
652.99429

• 90.03984
1238.66071

(
0.19016)• 0.21683 =

-0.04751

1238.66071) -1
189.70704

2412.96196 (
85.44007)12.47068

163.21489

(
0.19016)= 0.21683

-0.04751
2

(
0. 27) (0,46016)

+ 0.73 = 0.94683
0.90 0.85249

•• 0. 0•• 0 +L27 - 046016 + ~94683

1
n-p

• 117-3

= 0.08297

.46016 + 094:83 l08S249J~ 2

(08S249/~ 2

+ .•••.••
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If we set <5 == 0.0005J the computation I 0.08297 - 0.85276 = 0.90270 > a
0.85276

indicates the process should be carried at least one lOOrc iteration. The
results of five iterations are summarized below.

"2
"

C1
Iteration 81 8 83 value relative change2

0 0.27000 0.73000 0.90000 0.85276 --------

1 0.46016 0.94683 0.85249 0.08297 0.90270
2 0.53872 1.27950 0.80516 0.04713 0.43196
3 0.53990 1.52010 0.79161 0.04646 0.01422
4 0.53996 1.55280 0.79098 0.04643 0.00065
5 0.53996 1.55283 0.79099 o . 04643 0.00000

The fifth iteration results in a relative change in the estimated error mean
square far less than <5 and thus the process is terminated.

For the fifth iterationJ

0.55101
31.57812
-2.48136(

0.02457
••• 0.55101

-0.05254

(
0.00000)

l..s == 0.·00003 ==
0.00001

-0.05254)-2.48136
0.20912 (

-0.00056)-0.00003
-0.00052

J and

85 •••(~~:) = (~:~~~~~) + (~:~~~~~) = (~:~~~~~)
835 0.00001 0.79098 0.79099

An estimate of the variance-covariance matrix for the estimated parameters
is given by

~" 1cov C~ • 02 Cb; ~l+) - = 0.04643

(
0.00114

••• 0.02558
-0.00244

0.02558
1.46617

-0.11521

Cb; ~)-1

-0.00244)-0.11521
0.00971
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The accuracy of the parameter and variance estimates with respect to an

exact fit to the sample data is limited by lack of precision imposedby the

termination criterion used.

The plot on the following page showsthe data being fitted (dots) and

the function based on the estimated parmooters for each iteration. The

parameter estimates are so nearly the same for the second through the fifth

iteration that only a portion of the second iteration appears and the third

and fourth iteration results are completely obscured.

Example(Corn Data)

.Ananalysis of time related growth models in forecasting componentsof

corn yield is presently being conducted by the Yield Forecasting and Es-

timation Section. Data for this study were collected from three purposely

chosen fields in Iowaduring the 1973growing season and from a systematic

s8Jlllle of 10 fields in the Central Crop Reporting district of Iowa during

1974. Current plans are to continue this research in 1975.

As one possible growth model for the 1974project, it was asstunedthat

the independent time variable was days since silk emergenceas of the time

a corn plant was sampled. The dependent variable was assumedto be the

·meandry grain weight (grams) of all ears per plant for all plants with

the sameassociated value of time and drawn from the samesample field.

Days since silk emergencefor a plant was taken to be that of the primary

ear. It was assuned the residuals in this rodel are independently distri-

buted with meanzero and a constant variance, 0'2. That is,
u

E(!!) =: 0 and

E CD U") = 0'2 I
u n

Themodel 1
y. == t. + u. , i == 1, ... , n
1 a + a p 1. 1. (1)
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with y. and t. defined as described in the preceding paragraph was fitted
1 1

to the sample data as it was available up through August 15, September 1,

September 15, October 1, 8ctober 15, and'the end of the growing season.

This incrementing of the data was done to provide an indication of how

early in the growing season the model could be estimated and howthe

estimate changed as additional infonnation became available. To evaluate

the estimated JOOde1,the asymptotic value for each of the six calendar

date cut-offs was comparedwith an estimate of the meandry grain weight

per plant at harvest for the 10 sample fields combined.

The nonlinear least squares option of the Biomedical ComputerPrograms

(BMD)package was used to estimate the model parameters for each of the

six Clt-offs. This computer program uses a variation of the 1ineariza-

tion method. Table 1 shows the estimated value for each parameter, the

estimated relative standard error for each estimated parameter, the esti"'l

mated asymptotic value and the estimated asymptotic value as a percent of

the estimated grain weight per plant at harvest for each of the six cut-offs.

Table 1 lim Yt.
t ...•. 00 1
1

A
est'ed % of est'edcut- OA OA r (]

off n a a p ala. A/" value -.hv wt.a a p parr --
cabs. 278 .0061541 .15655 .91866 3.59 34.36 0.98 162.49 196.3

10/15 256 .0058769 .15263- .92037 3.85 31.85 0.90 170.16 111.4

10/1 197 .0053225 .16184 .91977 5.66 29.67 0.90 187.88 123.0

9/15 128 .0063958 .40740 .88626 6.39 38.86 1.34 156.35 102.3

9/1 70 .0063116 .69776 .86809 15.59 46.90 1.91 158.44 103.7

8/15 19 .016119 14.127 . 74074 18.90 134.18 6.96 62.04 40.6
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These results showconsiderable variability in the asymptotic value among

tJle six cut-offs. Also, these data indicate little success maybe expected,

in estimating a reliable rodel based only on data collected. up through mid-

~~_. -me plots on the pages that follow .showthe points being fitted

and the esttm&tedmodel function for each calendar date cut-off.

AHeteroscedastic-error Model

Havingcompleted the fitting of the hypothesized growthmodel (1)

to the six subsets of com data, an attempt was madeto evaluate howwell

the Wlderlying assumptions concerning the residuals had been met. An

examination of the plots showingthe fitted rodel and data points for each

cut-off provides an initial indication that there maybe a statistically

significant relationship between the variation in the residuals and the

independent variable, time. Theplots showthe estimated residuals be-

cominglarger for large values of time. In other words, wemaybe violat-

E (u~) • 02
1. U

for all i. This condition is corrroonlyreferred to as heteroscedasity.

To pursue this possibility, a methodsuggested by Glejser* was used.

Although this procedure was suggested in connection with linear models,

its application to a nonlinear model does not seeminappropriate. Accord-

ingly, we begin by assumingthat each residual, ui' can be expressed as

u. = v1.' f(t.), i = 1,..., n1. 1.

where v· is a randomvariable with
1

E (Y) - 0 and

R (V V 1• 02 I .- - v n

* H. Glejser, itANewTest for Heteroscedasity," Journal of the American
Statistical Association, vol. 64, pp. 316-323, 1969.
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Further, it is asSlDT\edthat the fonn of the n.mction f is known,but at

least one of its parameters is un.k:OOwn.It then follows that

E (ui) = E [Vi f (ti)]

••f (ti) E (vi)

••0

E (ur) = [f (ti)]2 cr~ ' i = 1, ... , n , and

E (ui u.) = E [v. f (t.) v. f (t.)]
J 1 1 J J

= f (ti) f (tj) E (Vi Vj)

=0, ifj.

Instead of the original assumption

E (!:! U.•) = 02 Iu n
it is nowassuned that

where

[f (t1)] 2 0 ~ 0

o [f (t2)]2 0

Q ••

o o .• • • 2
. [f (t )]

n

It can be shownthat if the assumption of heteroscedasity holds true,

using model (1) will give less efficient estimates of the parameters. That

is, the estimated relative errors of the parameters will be UlUlecessarily

large. APPlying the methodof generalized least squares at each iteration

of the linearization procedure, an estimate of Y. would be given by1<+1

- (Z" n - 1 Z ) -1 Z" n -1 (Y - f )
~+1 - K - ~ ;: - - K
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AIternati vely, the sameestimate of 'L would be obtained if the JOOd'~1+1
1

f (t. J
1

Yi • 1 . I + 1 ui' i::ll 1, ..• , n
tTfiT a + a p !.j,r f (ti) (2)

were fitted to the sample data using ordinary least squares at each

iteration. Either procedure can be used with BlvID. Note that the residuals

of model (2),

= v.
1

i=l, ... ,n

do have the desired characteristic of being independently distributed

with meanzero and a constant variance, 02•v
Since neither the function f nor its parameters are known, they nn.tst

be estimated. Following the procedure outlined by Glejser, the absolute

value of the estimated residuals obtained from fitting model (1), I ui I '
i '"1, ... , n, were regressed on an estimated function of time. An. exam-

inatian of a plot of the absolute value of the residuals against time

suggested the function

1'\ t · f (ti) = TO + T1 ti + ei, i = 1, "', n.

Since the estimated value of T was not significantly different from zeroo

for any of the six cut-off dates, the function

was used. Estimates of T were significant for all cut-offs. The estimates

for T for each cut-off date and the results of fitting model (2) using

estimates for f (t) are shownin the Table 2.
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I- Table 2

lirn Yt.
t._>-"",1
1

Olt- •. ,.
,. 0,. ,. 0 •. ,. 0 est'ed % of est 'ed,. -moff n T a a p _.!Us! ala value hr. wt.- (%) (%)

all
obs. 278 .491552 .0068499 .50744 .88328 2.99 23.22 0.79 145.99 95.5
10/15 256 .481948 .0066370 .47529 .88618 3.22 22.26 0".76 150.67 98.6
10/1 197 .467133 .0063319 .50529 .88455 3.87 22.03 0.76 157.93 103.4
9/15 128 .447382 .0070626 .76550 .86517 5.32 25.63 1..00 .141.59 92.7
9/1 70 .354731 .0069929 .95989 .85613 12.07 29.70 1.33 143.QO 93.6
8/15 19 .207561 .017680 28.315 .71327 16.90 128.11 0.89 56.56 37.0

A comparisonof Tables 1 and 2 showsthe estimated relative error of the

estimated parameters is nowsmaller as expected. The asymptotic values of

the estimated heteroscedastic- error model are at a somewhatlower level than

those of model (1). Perhaps the most attractive aspect of the rodel (2)

results is that the asymptotic values are less variable 8JlDngthe six cut-

offs. Note the October 1 value is substantially JOOrein line with the other

Olt-offs than before. TheAugust 15 value is still far from being realistic.

1mAutocorre1ated-error model

further examination of the plots frommodel (1) indicated the residuals

maynot be independently distributed. Specifically, for small values of

time most of the data points lie below the ftmction, particularly for the

last three cut-offs. This led to hypothesizing a third set of ass1.D11>tions

concerning the res iduals .

Let us asstDllethe residuals in model (1), ui' can be expressed as

ui = Vi £ (til, i = 1, .•.., n

sameas for the heteroscedastic-error rodel, but further assune the vi
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follow a first-order autore-gre~sive scheme--

v. = X v. + £
1 1-1 i

where IxI < 1 and the E. satisfy the assumptions
1

E (Ei) :;:0

E (E. E. ):;: 02
1 l+S E

s :;:0

== 0 s ;' 0
for all i. It then follows that

v. = X v· 1 + E.
1 1- 1

== X (X v. 2 + £;. 1) + E:.1- 1- 1

=

= E:. + X t. 1 + ).2 E. +1 1- 1-2

Therefore,

• 0

since
E (v~)

1

E (Ei) • 0 for all i.

= E[(E. + XE:
1 i-l

Accordingly we can write

••• E ( 2 + 2 \ + 2 \ 2£. e:. + \ 2£2• £. I\£;.E: 1\ 1\1 1 i-l 1 1-2 i-l

"'3. Johnston, Econometric Methods, McGraw-Hill, NewYork, 1963, pp. 244-246.
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•• F. ( E:~) + 2 ). F. (t. t. 1) + 2 A2 E (t. t . ) + A2 E ( E:? )1 1 1- 1 1-2 1-1

+ 2 A.3 E (t. £ ) + A 1+ E (£~ ) + •••• )
1-1 1-2 1-2

• (1 + A 2 + A 1+ + ••••• )

for all i. Also,

E(v1.v. 1) = E[(e:. + AC + ).2e:. + •••• )Ce:. + Ae:. + A2£ + •••• )]1- 1 i-l 1-2 1-1 1-2 i-3

= E {[E. + ).(e:. +).e: + A2e: + ••• )][t. + Ae:1 1-1 i-2 i-3 1-1 i-2

+>.2£. + •••• ])
1- 3

= 13(£.e:
1 i-I

+ Ae: £ .
i i-2

+ ••• + A

= E (t.e: ) + A E (£.e:. ) +A2 E (t.E• ) + ••••••••
1i-l 11-2 11-3

2
+ •••• )

2 )2= A F. (e:. + At + X E. + •••••1-1 i-2 1- 3

• X [E (t~ ) + 2 X E (£i-l E. ) + 2 X2 E (E.t;. )
1-1 1-2 1 1-2

+ X 2 E (t~ ) + 2 ,3 E ( ) 1+ '( 2 )
1

_0\ 1\ t. £. + X F. €. + ••. ]
1-2 1-3 1-3

= X (02 + A 2 02 + X 1+ 02 + ••••• )
e: t £

= X (1 + A 2 + X 1+ + •••• ) a;
= X 02

V
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Similarly,
E (v. v. ) •• A 2 02

1 1-2 V
and in general,

E (v. v. ) = )..S 02
1 1-5 V

Returning to the residuals, ui' from rodel (1), we have

E (ui) = E[vi £(ti)]

= £(ti) E(vi)

= 0

for all i, and
2 2

E (ut) = E {vi [£(ti)] }

= [f(ti)]2 E(vf)

= [f(t.)]2 02
1 V

E (U1·U1, s)= E[v1• £(t.) v. f(t. )]. - 1 1-S 1-S
•• f(t.) f(t. ) E(v.v. )1 1-S 1 1-S
• f(t.) f(t. ) AS 02

1 1-5 V
&Dnma.rizedin matrix notation. we have

f1 (~!!.,,)= 02 n
v

where
[f(td]2 n-lf(td f(t2) )., f(t1) f(t3) ).,2..•. ...... f(t1) £(tn) A

£(tl) f(t2) A [£(t2)]2 f(t2) f(t3) )., f(t2) £(tn) n-2A

f(tl) f(t3) )..2 [f(t3)]2
n- 3

f(tz) f(t3) A f(t3) f(~) A
~n ••

•

•
f(t3) f(t )n-3 ..•..• [f(t )]2n n

and



""

- A a •• o o
27

o

- A 1 + /..2 - A a 0 0

f(t1) f(tz) [f(tz)]2 f(tz) f(t ~

-1 1\2 =-
1->. 2

a - A 1 + A 2 0 a a
f(t2) f(t 3) [f(t;l]2 I

0 0 o ••• - A 1 + 1..2 - A
f(t ) f(t ) [f(t )]2 f(tn_

1
)f(tn)n- 2 n-1 n-1

a a .. • ..... a - A 1 )f(tn ) f(t ) [f(t )]2-1 n n

It can be shownthat if the assumption of autocorrelation holds true, using

roodel (2) will underestimate t~ true sampling variance of the estimated para-

meters. As in the case of the heteroscedastic-el'1'Or model, we can apply the

methodof generalized least squares at each iteration of the linearzation

procedure and obtain an estimat,e of y by
K+l

However,this approach cannot be used with BMDwhen0-
1

is not a diagonal

matrix. Therefore, we IIU.1Stuse a transfonnation matrix T such that a new

modelwill be formulated that can be fitted by ordinary least ~quares and



that will have a scalar dispersion matrix. That is,

It can be verified by nultiplying out that if T is defined as
-1

28

T =
-1 o

o o " ..

o .• If

o

o

• 0

o

o

o

o

o

o

then,

o 0

o 0

0 • . • • - A 1 0
f(t ) f(t )n-2 n-l

0 . . • i 0 - A 1
f(t ) f(t )n-l n

E (T U U" T") = 02 I
-- L e: n

The result of applying this transfonnation to the original model is

1
a + e pt1

+

and
y.
1

r(t.) -
1

A

f(t. 1)
1·

1

f(t.)
1

A
f(t. )

1-1

~ - 1 ,

i == 2, •... , n. (3)
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To verify that the residuals of this autocorrelated-error model are in-

dependently distributed with meanzero and have a constant variance, let
th

r. be the residual for the i- observation. Then,
1

[f uJE (rl) = E f(t
l
)

{l->.. 2
E (ul)=

f(td

= 0

E (r.) = E

~

>.. u]1 f(~i) f(ti j 1-1
-1

•• 0, 1 •• 2, ... , n.

E (T~) •• E
1

= E

= 02 - 2 X2 02 + X2 02
V V V

1 = 2, ... , n.
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U.
1-1

•• 11 - >,2 i-I
02 11 i-2A - >, - >,2 A 02

V V

•• 0 , i = 2, n.•...,
E (r.r. ). E~ - >, u. J [ ui-s - A Ui-S-]1 1-5 t. f(t. ) 1-1 f(t. ) f(t. )1 1-1 1-5 1-S-1

•• E ~ Ui Ui -S
f(t1o) f(t. )

1-5

A Ui Ui - s-1

f(ti) f(ti-s_1
)

- ). Ui-1 Ui-s
f(ti-1

) f(ti_s)

,2Uo u· ~+ 1\ 1- 1 .1-5- 1
f(t. ) f(t. )

1-1 1-5-1

•• AS 02 - >, >,S+1 02 _ A >,S-1 02 + A 2 AS 02
V V V V

= 0, i = 2, ... , n.

Thus, the residuals, r., have the desired characteristics.
1

Having fonnulated this autocorrelated-error model which retains the

assumption of heteroscedasity, the next step was to test for first-order

autocorrelation for each of the six Olt-offs. The test used was the van

Neumannratio. A This is a large sample test and is madeby comoarimzthe

computedvalue obtained with a pre-selected critical region from the normal

distribution with the appropriate meanand variance.

For each cut-off the van Neumarmratio. 02/52• was comoutedby

*J. Johnston, Ope cit., 1963, p. 250.
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02 n
(V.-V. ~2 /E (n-1)

"""'2". i-2 1 J,-
S

n
E v~/ n
i=1 1

where
l=l, ... ,n.

The expected value and variance of 02/s2 are given by

H(::).~l
4n2 (n-2)

(n+!) (n-1)3

Ail estimate of A for each cut-off was obtained by

n
I: v. v.

~ i=2 1 1-1
A = n ~

E v?-
i=2 1

which is a regression of the ~. on V. with no intercept. The results of
1 1-1

the von Neumanntests and the esti.m..1.tesfor A are slUT1I1larizedin Table 3.

Tahle 3
computed Estimated 95%

L"ut- von Neumann confidence interval
off ratio E(Q2/s2) V(62/s2) , limits for 152/52

all
obs. 1. 70 2.00722 0.01439 (1. 77, 2.24) 0.169891
10/15 1. 74 2.00784 0.01562 (1. 76, 2.25) 0.152777
10/1 1. S3 2.01020 0.02030 (1.73,2.29) 0.253208
9/15 1. 76 2.01575 0.03125 (1.67, 2.36) 0.126061
9/1 1. 99 2.02899 0.05714 (1. 56, 2. SO) 0.021710

8/15 1.95 2.11111 0.21046 (1. 21, 3.01) 0.053826
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For those cut-offs where the computedvon Neumannratio lies outside the

estimated confidence interval, we can, based on this 5ampledata, reject the

null hypothesis of non-autocorrelated residuals in favor of the hypothesis

of positive first-order autocorrelation. Table 3 showsthere is evidence of

autocorrelation for the last three cut-offs, although it is only for the

October 1 cut-off that the evidence is particularly convincing. For the

first three cut-offs, we carmot reject the null hypothesis of non-autocorre-

lated residuals. Accordingly, rodel (3) was fitted to the last three cut-

offs.

As is conm:>nlydone, the first observation was deleted in fitting the

IT'Odel.The results are presented in Table 4.

Table 4 lim yt.
t. -+ co 1
1

cUt- **-* est'ed % of est'ed
off n a a p value hv. wt.an-
ob~. 277 .0068072 .46516 .88591 3.71 29.25 1.00 146.90 96.1
10/lS 255 .0065846 .43236 .88903 3.94 27.50 0.93 151. 87 99.4
10/1 196 .0062570 .45860 .88753 5.41 31. 02 1.07 159.82 104.6

A comparisonof Tables 2 and 4 showsthe estimated relative error of

the estimated parameters for model (3) are larger than for model (2) as

expected. However,the asymptotic values changedonly slightly. This is

consistent with the relatively small degree of estimated autocorrelation as

reflected in the small values bf the estimated A's.
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Summary

Wehave shownthe fit of an intrinsically nonlinear model to sampledata

by the linearization methodis only an approximationof an exact fit in the

sense that an absolute minimunof the error stunof squares is not attained.

In spite of this limitation, the results of its use in fitting the growth

mOOl appear satisfactory.

The results of the heteroscedastic-error oodel are encouraging. How-

ever, the assumptionof a first-order autoregressive schemeis not particu-

larly convincing. Further investigation of alternative autocorrelation

scheme~might be warranted.
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